712 research outputs found

    Dynamical Electroweak Symmetry Breaking in SO(5)xU(1) Gauge-Higgs Unification with Top and Bottom Quarks

    Full text link
    An SO(5)xU(1) gauge-Higgs unification model in the Randall-Sundrum warped space with top and bottom quarks is constructed. Additional fermions on the Planck brane make exotic particles heavy by effectively changing boundary conditions of bulk fermions from those determined by orbifold conditions. Gauge couplings of a top quark multiplet trigger electroweak symmetry breaking by the Hosotani mechanism, simultaneously giving a top quark the observed mass. The bottom quark mass is generated by combination of brane interactions and the Hosotani mechanism, where only one ratio of brane masses is relevant when the scale of brane masses is much larger than the Kaluza-Klein scale (\sim 1.5 TeV). The Higgs mass is predicted to be 49.9 (53.5) GeV for the warp factor 10^{15} (10^{17}). The Wilson line phase turns out \pi/2 and the Higgs couplings to W and Z vanish so that the LEP2 bound for the Higgs mass is evaded. In the flat spacetime limit the electroweak symmetry is unbroken.Comment: 35 pages, 2 figures. A few corrections are mad

    Polarization Measurement for Fast Neutrons by a Liquid-Helium Scintillation Detector

    Get PDF
    開始ページ、終了ページ: 冊子体のページ付

    Non-resonant direct p- and d-wave neutron capture by 12C

    Get PDF
    Discrete gamma-rays from the neutron capture state of 13C to its low-lying bound states have been measured using pulsed neutrons at En = 550 keV. The partial capture cross sections have been determined to be 1.7+/-0.5, 24.2+/-1.0, 2.0+/-0.4 and 1.0+/-0.4 microb for the ground (1/2-), first (1/2+), second (3/2-) and third (5/2+) excited states, respectively. From a comparison with theoretical predictions based on the non-resonant direct radiative capture mechanism, we could determine the spectroscopic factor for the 1/2+ state to be 0.80 +/- 0.04, free from neutron-nucleus interaction ambiguities in the continuum. In addition we have detected the contribution of the non-resonant d-wave capture component in the partial cross sections for transitions leading to the 1/2- and 3/2- states. While the s-wave capture dominates at En < 100 keV, the d-wave component turns out to be very important at higher energies. From the present investigation the 12C(n,gamma)13C reaction rate is obtained for temperatures in the range 10E+7 - 10E+10 K.Comment: Accepted for publication in Phys. Rev. C. - 16 pages + 8 figure

    Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses

    Get PDF
    An anomaly in differential scanning calorimetry has been reported in a number of metallic glass materials in which a broad exothermal peak was observed between the glass and crystallization temperatures. The mystery surrounding this calorimetric anomaly is epitomized by four decades long studies of Pd-Ni-P metallic glasses, arguably the best glass-forming alloys. Here we show, using a suite of in situ experimental techniques, that Pd-Ni-P alloys have a hidden amorphous phase in the supercooled liquid region. The anomalous exothermal peak is the consequence of a polyamorphous phase transition between two supercooled liquids, involving a change in the packing of atomic clusters over medium-range length scales as large as 18Å. With further temperature increase, the alloy reenters the supercooled liquid phase, which forms the room-temperature glass phase on quenching. The outcome of this study raises a possibility to manipulate the structure and hence the stability of metallic glasses through heat treatment

    Enhanced bone-forming activity of side population cells in the periodontal ligament.

    Get PDF
    Regeneration of alveolar bone is critical for the successful treatment of periodontal diseases. The periodontal ligament (PDL) has been widely investigated as a source of cells for the regeneration of periodontal tissues. In the present study where we attempted to develop an effective strategy for alveolar bone regeneration, we examined the osteogenic potential of side population (SP) cells, a stem cell-containing population that has been shown to be highly abundant in several kinds of tissues, in PDL cells. Isolated SP cells from the rat PDL exhibited a superior ability to differentiate into osteoblastic cells compared with non-SP (NSP) and unsorted PDL cells in vitro. The mRNA expressions of osteoblast markers and bone morphogenetic protein (BMP) 2 were significantly upregulated in SP cells and were further increased by osteogenic induction. To examine the boneforming activity of SP cells in vivo, PDL SP cells isolated from green fluorescent protein (GFP)-transgenic rats were transplanted with hydroxyapatite (HA) disks into wild-type animals. SP cells exhibited a high ability to induce the mineralized matrix compared with NSP and unsorted PDL cells. At 12 weeks after the implantation, some of the pores in the HA disks with SP cells were filled with mineralized matrices, which were positive for bone matrix proteins, such as osteopontin, bone sialoprotein, and osteocalcin. Furthermore, osteoblast- and osteocyte-like cells on and in the bone-like mineralized matrices were GFP positive, suggesting that the matrices were directly formed by the transplanted cells. These results suggest that PDL SP cells possess enhanced osteogenic potential and could be a potential source for cell-based regenerative therapy for alveolar bone
    corecore